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Large internal strains and stresses can be produced by low temperature implantation over 
small distances from the free surface in a thick substrate. These are typically non-uniform and 
have large composition gradients. In dilute bcc  solutions, containing unclustered interstitial 
implants, the residual macroscopic strains may be treated as isotropic. The calculation of 
residual strain (or stress) is based upon anisotropic elasticity theory and internal stress is given 
in terms of the dipole tensor for individual defects in single crystal films. In a completely elas- 
tic zone, forces act to maintain a rigid outside surface and cause the strain distribution to be 
zero along directions parallel to the free surface. This produces a strain magnification along 
the perpendicular direction from Poisson contractions. If the implanted zone is completely 
relaxed by plastic deformation, the strains are described by the free expansion strains due to 
both implants and lattice damage. There is no angular dependence of the free expansion strain 
in this extreme condition. One can determine whether a zone is completely elastic, completely 
relaxed by plastic deformation, or in some intermediate state from plots of strain against sin2z, 
where Z is the angle of tilt relative to the surface normal. These results may be obtained from 
X-ray Bragg intensity data by measuring shifts and line broadening from (hkl )  planes at 
different tilt angles. Theoretical results are given for both single crystal and polycrystalline 
materials in terms of residual strain and stress. 

1. I n t r o d u c t i o n  
Low temperature ion implantation into a metal lattice 
can produce a disturbed region with a large strain 
gradient, near the free surface. A moderately thick 
underlying region, which goes undisturbed, constrains 
the implanted zone from expanding parallel to the 
surface of the zone. This results in the development of 
a biaxial residual strain gradient perpendicular to the 
surface. It is possible that such biaxial elastic strains 
may be partially or totally relieved by plastic defor- 
mation [1-3]. 

Residual stress calculations are presented for cubic 
single crystals with or without the presence of plastic 
deformation. Anisotropic elasticity theory is required 
for single crystal films and isotropic theory is used for 
polycrystalline materials. 

2. Residual Stress Theory 
The overall implanted zone is considered to respond 
elastically without the presence of relaxations asso- 
ciated with plastic deformation. The disturbed region 
is assumed to be contained within semi-rigid walls. 
Later, this constraint is removed thereby allowing for 
relaxations due to plastic deformation. 

In treating the purely elastic problem, imagine that 
the implanted zone is dissected into elementary, 
uncoupled slabs of constant concentration C~ with 
infinitesimal thickness, dx 3 (Fig. la). Allow each slab 
to undergo a free expansion (or contraction) due to 
the pressure exerted by the implanted atoms. We 
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know that a concentration of C~ of one kind of point 
defect and orientation produces a bulk expansion of 
the lattice given by [4] 

3 

Ci ~ V 3 Ci Z P,i 

V c~C, = ~ 8,, = ~=~ ,:1 (C1, + 2Cn)V (1) 

where P, and eii are the diagonal components of the 
dipole stress and strain tensors, respectively, expressed 
in terms of the cubic coordinate system. C,1, and Cl2 
are the elastic constants and V, the volume of a host 
lattice atom. If the defects occupy positions in the host 
lattice with less than cubic symmetry, then, in general, 
s ~ 822 5L 833, and the shear components, 812,813 and 
823 need not be zero. Cubic symmetry is maintained by 
allowing each of the axes of the principal strain to be 
oriented along mutually perpendicular directions in 
equal numbers. Consequently, the average strains are 

C 0V 
(811> = (~::> = (833> - 3Vc9C (2a) 

(~12> = (813> = (823) = 0 (2b) 

where C = Y~i C~ is the total concentration for all 
orientations of one kind of defect. It is more con- 
venient to adopt sample axes and write the average 
free expansion strain of Equations 2a and b in terms 
of the notation 

~hl = ~22 = ~33 (3)  
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Figure 1 Schematic drawings of implanted zone (a) 
uncoupled or freely expanded (b) coupled by incremental 
strains ASp forming rigid surfaces. 

and 

In the freely expanded state, Equations 2 and 3 are 
equivalent due to statistical isotropy in a cubic system. 
Isotropy is normally lost in the next step when the 
slabs are joined continuously (Figs la and lb) and the 
plane stress varies according to the elastic constants 
and crystal directions. 

Forces exerted by the underlying material do not 
allow these slabs to expand freely. The actual residual 
stresses which develop along the implanted zone can 
be calculated using the method of strain suppression. 
In this method, the slabs are joined continuously by 
first applying stress o-'~j, o-22 on the outer surfaces such 
that the net elastic strain resulting from the internal 
stresses exactly cancel the free expansion strain of 
Equation 3 in each slab along the 1' and 2' sample 
directions. It has been shown, using cubic anisotropic 
elasticity theory, that [6] 

with 

where 

o-~ = f e  i =  l o r 2  (4) 

o-;~ = o-;2 = o-~3 = o - 5  = 0 

f = [C,, + (A + 1)C,= + Can(A - 1){1,] 

i =  l o r 2  

with 

8 = - -  8fl J = - -  8f22 

Can = C44 - -  l / 2 ( C i l  - C12 ) 

-2C12 + Can ~'~ 
A = 

Cll -t- Can~r'~ 

2 2 f~ = 4(~fl~ + c~373 + il~y~) 

~'~1 = 4(~jfll~3f13 -~- 0~1~1~3~3 -~- i1~1i3~3)  

f~2 = 4(c~2fl:qfl3 + 0~2~120~3)~3 -{- f12~2f1373) 

a n d  (0~1, i l l ,  71 ), (0~2, 12, ~2), (0~3,13, '~3) a re  the  d i r e c t i o n  
cosines of the sample coordinate system (1', 2', 3'), 
with respect to the cubic coordinate system. The 
application of  normal stresses, o-~, o-22 according to 
Equation 4 have generated additional elastic strains in 

the slab, i.e. 

(2G2 - Cann)  C OV 
e;33 = Ae = ~ 37 ~ ] 3VOC (5) 

The elastic strain profile with depth is directly propor- 
tional to the variation of C with depth. Slabs are 
joined together continuously making the total strain 
along the 1' and 2' directions essentially zero through- 
out the implanted zone. 

The overall sample, including the substrate, must be 
free of any net external stresses. Therefore, additional 
reactionary stresses, O-'II (X3), O-22(X3) must exist which 
make the net external stresses and moments ident- 
ically zero. The strain distribution in the sample, due 
to these reactionary stresses is obtained by applying St 
Venant's principle. We replace these stresses by an 
equivalent stress pattern, which gives an identical 
result expressed as a planar stress distribution acting 
along the 1'-2' directions, 

• ov (! r,o 
Aai'i(x3) = f 3V OC \ t  Jo C(x3)dx3 

-}- 7 (x3 -- t/2) fl ~ (x 3 - t/2) C(x3)dx 3 

i = 1 or 2 (6) 

where t is the thickness of the overall sample and to, 
the thickness of the implanted zone. The elastic strain 
resulting from the stress distribution of Equation 6 is 
given by [4] 

/~el  l (X3) = ~'~e22 (X3) -- 3 V O C  C(x3)dx3 
x - 

;io I + 7 (x3 - t/2) (x3 - t/2) C(x3)dx 3 (7a) 

Aee33(x3) = AA e;ll(x3) = AA s;22(x3) (7b) 

An examination of the first and second terms of 
Equation 7a show that the first is constant while the 
second varies linearly with x3. Normally, the thickness 
of  the sample, t is very much larger than the thickness 
of  the implanted zone to. Consequently, the additional 
stresses and strains included in Equations 6 and 7 can 
be neglected. This is true for samples examined by the 
authors but is clearly not true for thinned sections 

2823 



used for transmission electron microscopy. For  thick 
samples, the total elastic stresses and strains, can be 
obtained from Equations 4 and 5. The normal elastic 
strain, at an angle Z to the x3 direction, is obtained 
from [6] 

/~ez(X3) = (S/ell(X3) - -  /~e33(X3))sinZx + ee33(X3) (8)  

Substituting Equation 5 into Equation 8 

1 • V  
e;z(x3) - 3 V ~ C  C(x3) (__fie, sin2x _ A) (9) 

where 

flel CI1 Jr- 2C12 
- - 1 - A ( 1 0 )  

Cll + Canf~ 

The total strain gradient in the implanted zone, at tilt 
angle Z, includes the free expansion strain of  Equation 
2 and the elastic strain of  Equation 9, i.e. 

e~(%) = fie1C(x3) 0V(1 _ sin2z) (11) 
3V 0C 

Clearly, the measured strain goes to zero smoothly 
with a sinZz or cos2z dependence, at Z = 90~ (see Fig. 
2). The ratio of the total strain at Z = 0~ to the free 
expansion strain is fie1 which is a magnification factor 
that can be as large as 2 to 3 [5]. Therefore, strain 
enhancement produced by a substrate which con- 
strains the implanted zone can produce a large effect. 
At an angle Z = )~0, the total strain is identically equal 
to the free expansion. This is obtained by equating 
Equation 9 to zero [6], giving 

COS2X0 = 1/fie I or sin2x0 = -A / f i e  I (12) 

For  angles X < Z0, the total strain is larger than the 
free expansion gradient whereas for Z > Z0, the 
reverse is true. This behaviour is shown in Fig. 2 
plotted conventionally in terms of  sin2z. 

For  the isotropic case, we set Can = 0; and use the 
relations 

(I - v)E 
C11 = 

(1 + v)(l -- 2v) 

vE 
Cl2 = (13) 

(1 + v)(1 - 2v) 

where E is Young's modulus and v Poisson's ratio of  

the host lattice. In this limit, the results for e~(x3) are 
independent of the crystallographic orientation and are 
applicable to an untextured polycrystalline material. 
The strain distribution e~(x3) and sin2xo become 

_ C ( x 3 ) • V ( 1  + v 
8 i (X3 ) 3V - ~ _ 1  - v /  (1 - sinZz) (14a) 

1 - v 2v 
c o s 2 z 0 -  or s in2)~0-  (14b) 

l + v  l + v  

A measurement of the strain at various tilt angles Z, 
allows one to separate out the free expansion from the 
elastic strain. X-ray intensity band analysis is used to 
determine the overall strain distribution and is dis- 
cussed in later papers [6-9]. 

Residual stress can be determined from the slope of  
the individual strain curves shown in Fig. 2 using 
Equations 4 and 11 

ddz(x3) _ - , ~, 
d sin 2 Z f 

i = 1 or 2 (anisotropic) (15a) 

- < , ( x 3 )  
- i = 1 or 2 (isotropic) (15b) 

E/(1 + v) 

If  the concentrations are sufficiently small, these 
results can be applied to more than one type of point 
defect by superimposing their fields. Summing over 
defect species, j ,  the free expansion becomes 

8 ; 1 1  (X3) = /]f22 (X3) = /~f33 (X3) 

(C(x3) Or)j y (16) 
3 v  b--( 

The free expansion term in Equation 16, represents 
the strain that one would measure after complete 
relaxation due to plastic deformation. This is indepen- 
dent of g as is illustrated by the horizontal line in Fig. 
2. The next section discusses the intermediate case of 
partial relaxation of the elastic strain. 

3. Residual stress re laxat ion due to  
plast ic d e f o r m a t i o n  

Residual elastic strains can be relaxed by plastic defor- 
mation along an implanted zone. Consider the zone 
to be divided into slabs parallel to the surface and 
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Figure 2 Three strain curves for an internal slab 
containing internal sources of strain. Note 
extremes: Completely rigid surface-maximum 
elastic strain, and freely expanded slab-maximum 
plastic deformation. Intermediate: Some plastic 
deformation - incomplete strain suppression. 
~el = (Cll _}_ 2C12)/(Cll Jr- Can~ ). 



of infinitesimal thickness dx 3. If  the plastic strain 
increment is A ep(x3) at x 3 (Fig. 1) the total strain is the 
sum of all strain increments extending back to the 
undisturbed interface. This cummulative sum is desig- 
nated by ep(X3) in the sample coordinate system. Re- 
moving the elastic strain suppression stresses allows a 
slab to expand freely parallel to the surface. This 
expansion is reduced by the plastic strain, i.e. 

C(x3) ~ V 
~;11 = ~'e22 -- 3V ~C s; (x3) (17) 

In order to restore the residual elastic strain to the 
original value prior to the free expansion, biaxial sur- 
face stresses o'~, o-;2 are applied. This results in an 
elastic deformation that is opposite in sign but equal 
to the strain given by Equation 17. The elastic strain 
along x3 (Z = 0) includes the magnification factor,/?eJ, 
and this must be combined with the free expansion to 
obtain the observed effective strain at a depth, x3. If  
the tilt angle, Z, is included, 

~i (X3) = 2; (X 3 ) -~- /~el (C_(x3) (~ r ~; (x 3 ) )  
\ 3 v  ~c 

(1 - sinZz) (18) 

Again, the strain varies linearly with sin2z (or cos2z) 
as seen in Fig. 2. There are three points of special 
interest located at Z = 0, Z0 and 90 ~ with the following 
strains 

eO(X3) = (flel C(x3) ~V flei) ) 
3V ~?C + (1 - ~s;(x3) (19a) 

, C(x3) g V (19b) 
eZ0 (•3) -- 3V 8C 

e;0(x3) = Sp(X3) (19c) 

The invariant point Equation 19b at Z0, obtained from 
Equations 12 or 14b, gives the free expansion strain 
while the extrapolation point at 90 ~ gives the accu- 
mulation of plastic deformation strain between a 
strain free substrate and the point x3. 

4 .  D i s c u s s i o n  
The previous developments have considered elastic 
and plastic deformations for only one out of many 
slabs. However, an ion implanted zone normally does 

not have a uniform distribution of implants. 
Therefore, the preceding developments must be 
extended to a distribution of slabs with different 
strains (Fig. 1). Before considering such an extension, 
our findings are summarized for one slab. 

Consider a system of finite slabs with each in a state 
of biaxial uniform strain. The amount of strain sup- 
pression required for each was assumed to be given by 
a strain curve like the one in Fig. 2. The states of strain 
for one can be summarized as follows. 

(I) Residual elastic strain without plastic defor- 
mation. A maximum absolute strain is found perpen- 
dicular to the free surface as given by flel (C(x3) / 
3 V) (~ V/aC). With complete strain suppression, zero 
strain should be observed along all lines parallel to the 
free surface (X = 900) . For anisotropic substances, 
the plane stresses cri~ and a~z are not equal. 

(II) Residual elastic strain completely relaxed by 
plastic deformation. Neglecting any defect substruc- 
ture, the macroscopic elastic condition is equivalent to 
an ideal free expansion without constraining forces. 
This results in a constant macroscopic strain for all 
directions within a slab. 

(III) Residual strain is only partially relaxed. The 
strain is intermediate between extremes I and II. The 
parameters of interest may be obtained by extrapolat- 
ing Z -* 90~ to obtain the total accumulated plastic 
deformation and by interpolating to Z0 to obtain the 
free expansion strain. 

In each case, the point Z0 is invariant and behaves as 
a pivot point for linear strain curves. For Case I, the 
value of e; and the slope are the same except for a 
change in sign. Also, the volume changes can be posi- 
tive or negative depending upon the nature of the solid 
solution. 

These results are simply extended to a system of thin 
slabs of constant thickness having average strains that 
correspond to points along the implant profile (Fig. 2). 
If each slab is taken to be of uniform composition, 
there will be one line per slab having a linear angular 
variation in strain. Typically, the distribution of 
implants is Guassian-like causing the distribution of 
lines to cluster near the peak. The distributions for the 
extreme cases i.e. completely elastic (I) or completely 
plastic (II) strains are shown schematically in Fig. 3 as 

~X 
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o p,,~- ~ 

- -  s i n  2 X b 
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0 /~d-I 

~a 
s i n  a X 

Figure 3 Schematic of (a) completely elastic and (b) freely expanded distribution of stepped strain in a non-uniform sample. 
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(a) and (b) with c~ = (1/3V)/(OV/6C)= constant. 
These are stepped distributions of strain that become 
increasingly magnified in the elastic case as )~ ~ 0 ~ and 
shrink to a point as g ~ 90~ When the deformation 
is completely plastic or the sample has freely expanded, 
the distribution of  strains remains unchanged with Z. 

At this point, one additional refinement should be 
considered. Figs 3a and b, at Z = 0 ~ show results for 
stepped rather than a continuous change in concen- 
tration. This requires C(x3) to be stepped if both/?el 
and c~ are constants for a given sample. C(x~) can be 
made continuous with a linear variation in each slab. 
This additional complication would cause each line to 
expand into a fan-shaped element that converges to a 
point at Z = 90~ and opens fully at g = 0. The range 
of  free expansion strain is seen at g0- The introduction 
of  fan-shaped elements into Fig. 3a, produces a con- 
tinuous change in C(x3) and therefore e x (x3). At this 
point, Fig. 3a may be redefined as the distribution of 
mean strains in a system of  slabs of  constant thickness. 

A consideration of the extreme of complete elastic 
relaxation by plastic deformation, with a continuous 
change in C(x3), becomes complicated by the details 
of the dislocation substructure. However, if one plots 
mean lines of strain through each subgrain, one would 
expect clustering as shown in Fig. 3b. The fine details 
of elastically interacting dislocation substructures 
[1-3] go beyond the intent of this paper which deals 
with continuum elasticity theory. 

Preliminary results for 5% nitrogen implanted into 
niobium indicate that the implanted zone remains 
completely elastic [7]; however, this one case cannot 
rule out the possibility of  having plastic deformation 
at higher fluences or for different systems. 
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